INSPECTION AND CONFORMITY ASSESSMENT OF THE ITER REACTOR (VACUUM) VESSEL

ITERBELGIUM Networking Event 2015, March 4th, Diamant Building, Brussels

Andre Weyn, Head of Service
Inspection of Nuclear Pressure Equipment
aweyn@vincotte.be

AIB-Vinçotte International

Jan Olieslagerslaan 35, 1800 Vilvoorde

Belgium

CONTENTS

- VINCOTTE
- ITER TOKAMAK
- ITER VACUUM VESSEL
- FRENCH ORDER for Nuclear Pressure Equipment
- SUBCONTRACTORS
- DESIGN REVIEW
- INSPECTION OF MANUFACTURING
- RCC-MR CODE
- CONCLUSIONS

VINCOTTE

- VINCOTTE PROVIDES MORE THAN 130 SERVICES
- BRANCHES IN 14 COUNTRIES
- MORE THAN 2500 EMPLOYEES WORLDWIDE
- VINCOTTE IS ACTIVE IN THREE DOMAINS :

SAFETY / QUALITY / ENVIRONMENT

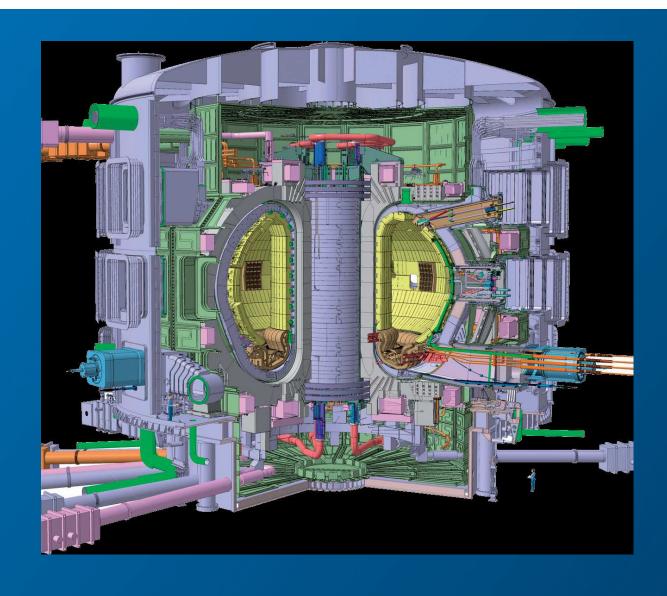
• SERVICE TYPES:

CERTIFICATION / INSPECTION / ADVICE / TRAINING

• SELECTION FROM THE FIELDS OF EXPERTISE :

LIFTING / ELECTRICITY / PRESSURE / NDT/ CIVIL ENGINEERING / ENVIRONMENT / ...

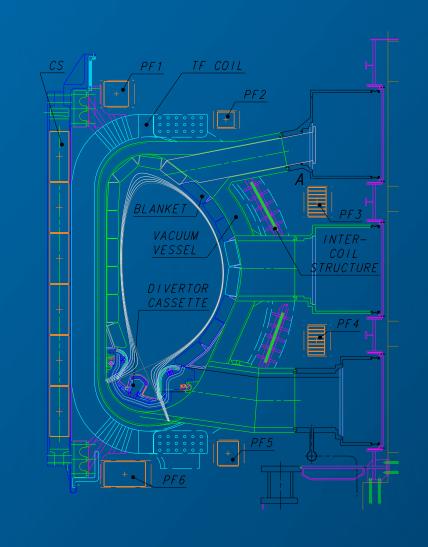
VINCOTTE



INSPECTION OF NUCLEAR PRESSURE EQUIPMENT

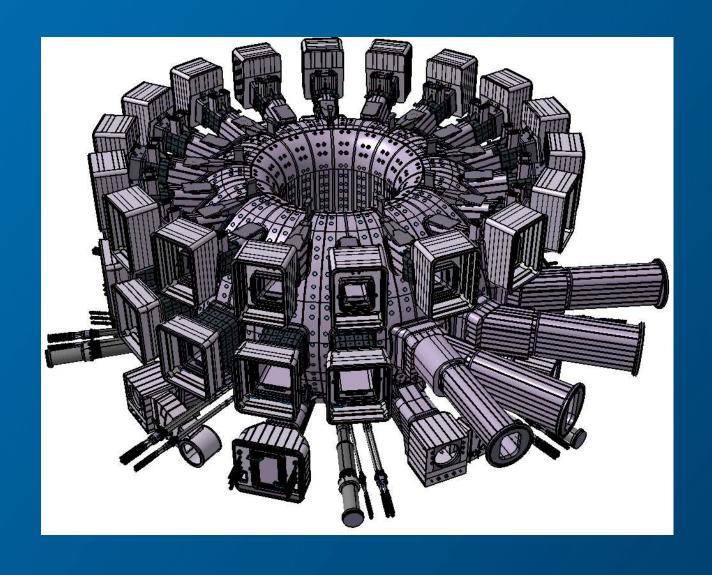
- AUTHORIZED IN BELGIUM FOR INSPECTION OF NUCLEAR PRESSURE EQUIPMENT DURING :
 - > NEW CONSTRUCTION (ASME III TRANSPOSED)
 - > REPAIR / REPLACEMENT (ASME XI TRANSPOSED)
 - > IN SERVICE INSPECTION (ASME XI TRANSPOSED)
 - → NPP DOEL / TIHANGE / SCK-MOL
- **AUTHORIZED IN FRANCE** FOR INSPECTION OF NUCLEAR PRESSURE EQUIPMENT ACCORDING ESPN ORDER OF THE 12th DECEMBER 2005.
 - → NPP ITER : Vacuum Vessel, Drain Tanks
 - → NPP EPR-FLAMANVILLE: MFIV / MSIV

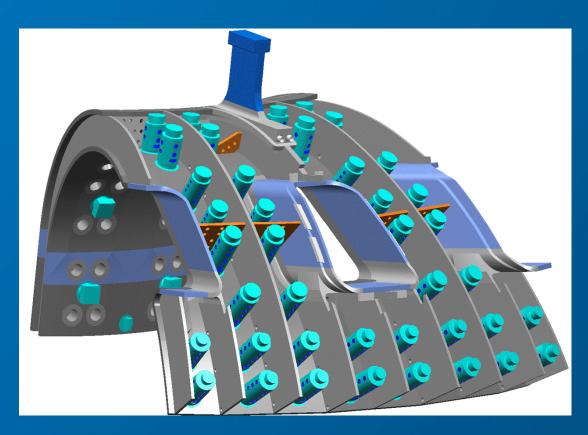
ITER TOKAMAK

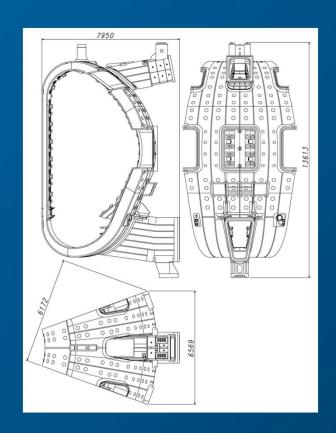


ITER TOKAMAK

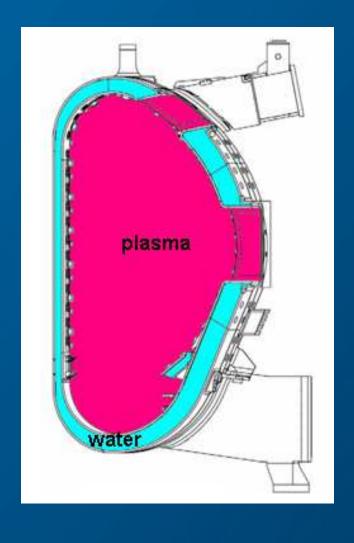
Major components


- Toroidal Field Coils
- Poloidal Field Coils
- Central Solenoid
- Vacuum Vessel
- Ports
- Support Structure
- Blankets
- Divertors
- Cryostat
- Thermal shield




Major parts:

- 9 x 40°-sectors
- 18 upper ports
- 17 equatorial ports
- 9 lower ports
- 9 VV gravity supports
- penetrations



Double wall structure with rib stiffeners and blanket module support housings Shielding and cooling water between shells

Size: - Torus outside diameter	19.4 m
- Torus inner diameter	6.5 m
- Torus height	11.3 m
- Shell thickness	60 mm
Water inlet temperature	
- Normal operation	100° C
- Baking	200° C for VV
Water inlet nominal pressure main vessel	
- Normal operation	1.1 MPa abs
- Baking	2.4 MPa abs
Pressure inside plasma chamber during	0 MPa abs
operation	(vacuüm)
Volume of coolant in main vessel	200 m ³
	(9 sectors)
Coolant	Water
Total mass of assembled vessel	\pm 5000 ton
Total mass in operating conditions	± 9000 ton
Material	316L(N)-IG

FRENCH ESPN ORDER NUCLEAR PRESSURE EQUIPMENT

• French Order related to Nuclear Pressure Equipment (NPE/ESPN) December 12th, 2005

- Definition of Nuclear Pressure Equipment :
 - is pressure equipment as defined in the PED;
 - is used in a Basic Nuclear Installation;
 - directly ensures containment of radioactive substances;
 - in case of failure leads to release of activity above 370 MBq.

FRENCH ESPN ORDER NUCLEAR PRESSURE EQUIPMENT

- ESPN has practically extended the application of the PED:
 - > Risk Category
 - > Essential Safety Requirements
 - > Conformity Assessment Modules

• However:

- > Other selection criteria for Conformity Assessment Modules
- > Additional Essential Safety Requirements depending on the nuclear level
- > Radioprotection Requirements
- > In Service Inspection Requirements

FRENCH ESPN ORDER APPLIED TO THE ITER VACUUM VESSEL

- MULTICHAMBER NUCLEAR PRESSURE EQUIPMENT
 - nuclear level N2
 - risk category IV
- MANUFACTURER : ITER ORGANIZATION
- AGREED NOTIFIED BODY: AIB-VINCOTTE

CONFORMITY ASSESSMENT MODULE G

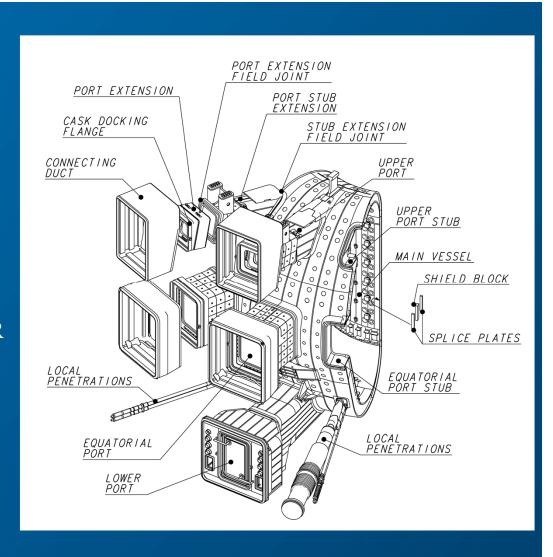
FRENCH ESPN ORDER

APPLIED TO THE ITER VACUUM VESSEL

- CONFORMITY ASSESSMENT MODULE G
 - > Design Review
 - > Inspection during Manufacturing in the Shops
 - > Inspection during Assembly in Cadarache
 - > Inspection of the Pressure Testing & Final Assessment
- LACK OF ACCESSIBILITY DURING MANUFACTURING
 LACK OF ACCESSIBILITY IN OPERATION
 - → COMPENSATORY MEASURES

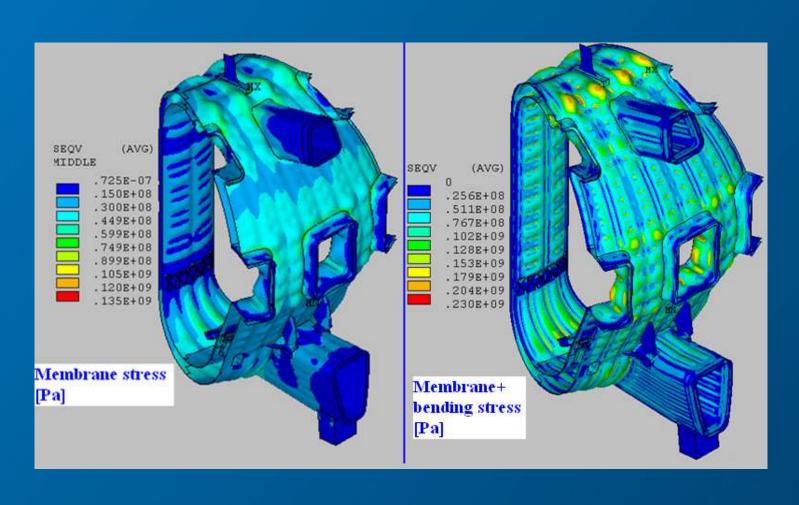
ITER VACUUM VESSEL SUBCONTRACTORS

- KODA HYUNDAI HEAVY INDUSTRIES
 - > 2 SECTORS
 - > 9 LOWER PORTS
 - > 17 EQUATORIAL PORTS
- EUDA ANSALDO / MANGIAROTTI / WALTER TOSTO
 - > 7 SECTORS
- RFDA MANNESMAN DIESEL TURBO
 - > 18 UPPER PORTS
- INDA AVASARALA: IN WALL SHIELDING STRUCTURE
- IO ENZA: ASSEMBLY

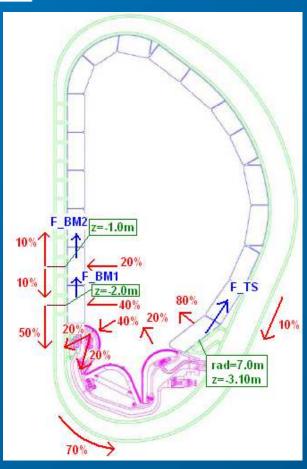

DESIGN REVIEW - Classification VV Parts

PARTS CLASSIFICATION:

- main pressure parts
- pressure parts
- parts contributing to pressure resistance
- other parts


→DIFFERENT REQUIREMENTS FOR

- material properties
- material certificates
- stress categorization
- non destructive examination
- etc.


DESIGN REVIEW – Stress Analysis

Stress distributions under hydrostatic test pressure

DESIGN REVIEW – Stress Analysis

Halo current distribution

VDE Downward

Full model

DESIGN REVIEW - In-Service Inspection

- ISI is complex because :
 - particular VV geometry
 - structures around VV (inside & outside)
 - activation of materials
 - -> Development of special techniques
- Monitoring during operation:
 - (1) Vacuum gauge, Residual Gas Analyzer
 - (2) Instrumentation on the VV:
 - > thermocouples
 - > strain gauges
 - > acceleration measurement
 - > displacement measurement
 - (3) Ex-Vessel measurement of the water chemistry
- Periodic inspection without replacement of IVC :
 - (1) Pressure test of cooling double shell
 - (2) Leak test
 - (3) Visual inspection on accessible locations
- Inspection after removal of IVC :
 - (1) Visual inspection
 - (2) Surface defect inspection
 - (3) Volumetric examination

- FURTHER DESIGN REVIEW PLUS
 - → REVIEW CONCEPTUAL MANUFACTURING DESIGN
 - → REVIEW DETAILED MANUFACTURING DESIGN
- MATERIAL SUPPLY
- TENTHS OF THOUSANDS OF PIECES
- TENTHS OF THOUSANDS OF WELDS
- ABOUT 100 WELDING PROCEDURE SPECIFICATIONS
- ADVANCED NON DESTRUCTIVE EXAMINATION
- INDIRECT VISUAL EXAMINATION
- VERY SEVERE DIMENSIONAL TOLERANCES

PARTIAL MOCK-UP

AT THE CURRENT STAGE (MARCH 2015):

- FINISHING MANUFACTURING DESIGN
- MATERIAL SUPPLY
- QUALIFICATION OF MANUFACTURING PROCEDURES
 - > FORMING
 - > HEAT TREATMENT
 - > WELDING PROCEDURES
 - > NON DESTRUCTIVE EXAMINATION PROCEDURES
- QUALIFICATION OF PERSONNEL
 - > WELDERS
 - > NON DESTRUCTIVE EXAMINATION PERSONNEL

- KODA STARTED WELDING IN 2014 FOR THEIR SCOPE :
 - > 2 SECTORS
 - > LOWER PORTS
 - > EQUATORIAL PORTS
- EUDA AND RFDA WILL START WELDING IN 2015

• VV ASSEMBLY IN CADRARACHE: START IN 2017?

RCC-MR CODE

• High temperature structures

- Quality Assurance

Materials

Design

- Fabrication

- Welding -

Nondestructive Examination

- RC 3800 : box structures class 2
- Appendix A19 : ITER VV
- Non Harmonized Standard

ESR of PED/ESPN satisfied?

RPR of ESPN satisfied?

→ Assessment of the RCC-MR for the VV

(Appendix 18 is helpful)

ITER VACUUM VESSEL CONCLUSION

- COMPLEX PROJECT
 - > TECHNICAL
 - > MANAGEMENT
- INTERNATIONAL ENVIRONMENT
 - → INCREASE OF NUMBER OF CONTACTS AND KNOWLEDGE
- STATE OF THE ART TECHNOLOGY
- MEETING BETWEEN SCIENTIFIC WORLD / INDUSTRY